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Abstract. In this paper, a new hyper-heuristic algorithm is proposed for the Symmetric
Traveling Salesman Problem. In the proposed method, we first create a tour selecting a few
cities by the Nearest Neighbor algorithm, then we extend the tour by inserting the
unselected cities into the tour using shortest path and insertion algorithms. We conducted
computational experiments of the proposed algorithm on TSPLIB test problems.
Experimental results show that the proposed algorithm is efficient compared to the Nearest
Neighbor algorithm for solving The Symmetric Traveling Salesman Problem.
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1. Introduction

The Traveling Salesman Problem (TSP) is a well-known and extensively
studied problem in the field of combinatorial optimization. Since it is an NP-hard
problem, many heuristic and meta-heuristic algorithms have been developed to
solve it [1].

This problem has many applications. Some of them are [1-3]:

Drilling of printed circuit boards

Overhauling gas turbine engines

X-ray crystallography

Computer wiring

The order-picking problem in warehouses

Vehicle routing
There are different variations of the TSP such as asymmetric and symmetric
TSP, the generalized TSP and travelling purchaser problem. In this paper, we
focused on only The Symmetric Traveling Salesman Problem (STSP).

The TSP can be defined on a graph G = (V, A), whereV ={v,,...,v, } is a set

of n vertices (cities) and A= {(vi,vj )‘vi Vi eV,i# ] }is a set of arcs, together with
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a nonnegative cost (or distance, weight) matrixC :(cij)associated with A. The
problem is considered to be symmetric (STSP) ifc; =c;; for all(vi,vj)e A, and

asymmetric (ATSP) otherwise. Elements of A are often called edges (rather than
arcs) in the symmetric case. The TSP consists of determining a minimum cost
Hamiltonian cycle (circuit), often simply called a tour.

Algorithms for solving the TSP may be divided into two classes: exact
algorithms and heuristic algorithms [4-7]. Exact algorithms try all permutations
and choose the tour with minimum cost. Dynamic programming, branch and
bound, linear programming, cutting plane methods are exact methods with different
complexities to solve the TSP problems but they all not applicable for large-scale
problems.

Heuristics do not guarantee an optimal tour but propose approximate
solutions. These heuristic algorithms can be divided into three classes: tour
construction, tour improvement and composite algorithms [3].

Tour construction algorithms iteratively extend a connected partial tour or
iteratively combine tour fragments of the best tour. The tour improvement
algorithms start with a given tour and replace two links of the tour with other links
to obtain a shorter tour. Composite algorithms include both construction and
improvement models [1].

In this paper, a new method is proposed based on creating initially a tour
using a few vertices and then adding new vertices to the tour.

2. Tour construction heuristics

Tour construction algorithms have one thing in common, they stop when a
solution is found and never try to improve it.

In this paper, we focus on only two of these algorithms: Nearest neighbor
and Insertion heuristics.

2.1 The nearest neighbor algorithm
This is perhaps the simplest and most straightforward heuristic for the TSP.
The key to this algorithm is to always visit the nearest city [8].

Nearest Neighbor:

1. Select a random city.

2. Find the nearest unvisited city and go there.

3. Are there any unvisited cities left? If yes, repeat step 2.
4. Return to the first city.

2.2 Insertion heuristic
Insertion heuristics are quite straightforward, and there are many variants to
choose from. The basics of insertion heuristics is to start with a tour of a subset of
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all cities, and then inserting the rest by some heuristic. The initial subtour is often a
triangle or the convex hull of the cities. One can also start with a single edge as
subtour [3].

Nearest Insertion:

1. Select the shortest edge, and make a subtour of it.

2. Select a city not in the subtour, having the shortest distance to any one of the
cities in the subtour.

3. Find an edge in the subtour such that the cost of inserting the selected city
between the edge’s cities will be minimal.

4. Repeat step 2 until no more cities left.

2.3. Shortest path algorithm

Traditional shortest path algorithms such as Dijkstra’s and Bellman-Ford
algorithms have complexitiessO(n?)and O(mn), respectively, where n is the
number of vertices and m is the number edges [9]. The following proposed
algorithm finds the shortest path between two vertices by trying the unused vertices
and this part of the algorithm runs in O(n) time.

3. A new method for solving the Symmetric TSP

The proposed method for solving the Symmetric TSP consists of three main
parts.
3.1 The first part
In this part, a tour is constructed with selected vertices by the NN algorithm.
To select the vertices, firstly a central vertex should be found.

In order to find a central vertex, firstly, the middle point with

X:E:i”:lxi )/n andy:(zi":lyi) ncoordinates should be calculated. Then, the

nearest vertex to the middle point (X, Yy)among all vertices will be our central

vertex. All edges incident to the central vertex are sorted in a list so that their
weights are monotonically decreasing. The vertices other than the central vertex of
the first k edges are selected, where k is an arbitrary parameter. Let ¢ be a constant
which equals the half of the weight of the first edge in the sorted list. Another k
vertices other than the central vertex of the first k edges whose weights are less
than or equal to c are selected. That is, totally 2kvertices are selected. Then a tour is
constructed for the selected 2k vertices using the NN algorithm.

3.2 The second part

In the second part, a new tour is constructed by adding some vertices (if
possible) to the tour which is formed by the NN algorithm in the first part. The
longest edge is found. A shortest path connecting the end vertices of this edge
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excluding the edge itself is found. If the edges on the shortest path are smaller than
the longest edge, then the longest edge is deleted and the tour is updated as this
shortest path.

3.3 The third part

In the last part, if there exist vertices which are not added to the tour, these
vertices are added to the tour using insertion algorithm. Finally, we have a tour
containing all vertices.

The algorithm of the method proposed above is as follows:

Step 1. Find the central vertex on the graph.

Step 2. Find 2k vertices as described in Section 3.1. Then add these 2k vertices

to the selected list.

Step 3. Construct a tour using the NN algorithm with selected vertices.

Step 4.If there are no unused vertices go to Step 10.

Step 5.Find the longest edge in the tour constructed in Step 3.

Step 6.Find the shortest path connecting the end vertices of this edge

excluding the edge itself.

Step 7. If the edges on the shortest path are smaller than the longest edge, then

delete the longest edge, and add edges, vertices on the shortest path to

the selected list and update the tour.

Step 8. Otherwise, find the next longest edge in the constructed tour and go to

Step 6. If there is no any edge to be selected, then go to Step 9.

Step 9. If there are unused vertices, then add these vertices to the tour using

insertion algorithm.

Step 10. Stop.

We investigate the time complexity of the algorithm given above as follows: Step 1
requires O(n) time. Step 2 is implemented by a well-known sorting algorithm

called quicksort which runs in O(nlgn). The NN algorithm in Step 3 has a
running time O(k®) to form a tour using 2k vertices. Step 5 takes linear time.
Since the test problems are complete graphs with Euclidian edge costs, the shortest
path between two vertices v, and v, is the edge incident to these vertices, i.e.,
(V,,V,). However, we find the shortest path in Step 6 without using (v,,V, ). This
can be achieved by trying all the other vertices to form a path from v, and v, and
finding the minimum one. So, Step 6 is handled in O(n) time which is linear. Step

7 takes constant time. In Step 8, if there are unselected edges, the next longest edge
can be found in O(k) time and we go to Step 6 which means a loop. This loop is

bounded by O(k).The last two steps are implemented in constant time. Thus, the
overall running time of the algorithm is O(n?) which is polynomial.

11



PROCEEDINGS OF IAM, V.4, N.1, 2015

4. Computational tests of the proposed method for the TSP

To test the effectiveness of the method, 14 TSP problems taken in [10] are
examined for benchmarking.

In Table 1, first column includes the name of the test instances having from
51 to 783 cities in TSPLIB. Second column shows the optimal solutions. The third
column shows the solutions obtained by the NN algorithm. The other columns
except the last two ones shows the solutions using the proposed method for the
different values of the parameter k. Shaded (grey) areas in Table 1 are the best
solutions found by the proposed method. Gapl indicates the relative error between
the solution obtained by the NN algorithm and the optimal solution. Gap2 indicates
the relative error between our best solution and the optimal solution.

Table 1. Experimental results

Paramater k

Ins—[::ces Optimum | NN LnJ LnJ L%J {EJ LEJ \fgnJ LNJ Gopl | Gapz
16 8 16 4 16 8 16 || @0 | @)

Eil51 426 514 490 483 471 470 479 461 492 20,7 8,2
Eil76 538 712 635 614 592 608 615 615 601 323 | 100
Rat99 1211 1565 1430 1461 1375 1364 1368 1361 1394 29,2 12,4

Rd100 7910 9941 9715 9133 8976 9174 9128 9197 8626 25,7 9,1
Eil101 629 825 713 727 727 720 720 727 721 31,2 13,4
Ch130 6110 7575 6847 6853 6740 6944 7006 6941 7041 24,0 10,3
Ch150 6528 8195 7747 7510 7565 7561 7677 7659 7455 25,5 14,2
Rat195 2323 2762 2735 2814 2708 2604 2662 2638 2662 18,9 12,1

D198 15780 18655 17805 17583 17912 17887 17008 17343 17259 18,2 7.8
Rd400 15281 19168 18239 17728 17809 17967 18172 17806 18229 25,4 16,0
D493 35002 43646 | 40241 38988 41406 41142 40145 40560 41382 24,7 11,4
Rat575 6773 8449 8227 8195 7943 8021 8037 7781 7763 24,7 14,6
D657 48912 61874 | 58788 58023 57197 59045 59155 57646 56134 26,5 14,8
Rat783 8806 11255 10548 10418 10431 10297 10437 10269 10189 27,8 15,7

Relative error is calculated as follows:

__ best solution —optimal solution y

Gap . -
optimal solution

100 -

It can be seen in Table 1 that the proposed algorithm gives better results
compared to the NN algorithm.
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Figure 1. Graphical representation of the experimental results
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5. Conclusion

In this study, a new hyper-heuristic method is proposed for The Symmetric
Traveling Salesman Problem. In the proposed method, the NN algorithm and
Insertion heuristic are also used. Proposed method is compared with the NN
algorithm. The experiment results show the new algorithm is effective for solving
the STSP.

In Figure 1, the relative errors between the optimal solution and the best
solution using the various values of the parameter k are illustrated for each of 14
TSP instances. One can see that there is no a constant value of k to obtain the best
solution for each problem. To find the best result, algorithm must be applied for
different values of the parameter k, and the minimum one should be selected
among them. The method for solving the TSP presented in this paper is relatively
simple and useful.
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Tacir masalasi iiciin tur genislodon Hiperevristik alqoritm
Gozde Kizilates, Fidan Nuriyeva, Hakan Kutucu

XULASO

Simmetrik Tacir mosalasi ligiin hiperevristik bir alqoritm toklif edilmisdir. Bu tisulda
Onco az sayda gohar segilorok “On yaxin qonsu” alqoritmi ilo bu gohorlordon kecon bir
devro miioyyonlogdirilir, sonra iso “On qisa yol” vo “Uygun sohor olave etmd”
alqoritmlorindon istifads edilorok bu devrs biitiin soharlordon kegon tura genislodilir. Toklif
edilmis alqoritm ilo test kitabxanasi masalolori iizorinds hesablama eksperimentlari
aparilarag “On yaxin qonsu” alqoritmi ilo miqayiss edilmigdir. Hesablama
eksperimentlorinin naticolori toklif edilmis alqoritmin effektiv oldugunu gostorir.

Acar sozlor: simmetrik tacir mosolasi, hiperevristik alqoritm, “on yaxin qonsu”
alqoritmi, “uygun sahar slava etma” alqoritmi, “an qisa yol” alqoritmi.
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Paciupsirommii Typ runep 3BpHCTHYECKHI aJrOPUTM VISl pellleHUsl 3a1a4u
KOMMMBOSIKEpa

I'o3ne Ke3pinatem, ®unan Hypuesa, Xakan Kytymxy

PE3IOME

IlpennoxxeH TUNEPIBPUCTUUECKUM  aIrOPUTM U1  CHUMMETPUYHOM  3ajgadu
KOMMHBOSDKEpa. DTUM METOJIOM CHadajga C MCHOJIb30BaHHEM alrOpUTMa “‘OuvpKaifmimi
coceq” oIpenenseTcs UK, MPOXOASIINHA yepe3 onpeeleHHbIe ropoa, IOTOM 3TOT LUK
C TPUMEHEHHEM aJrOpPUTMOB “KpaTdaWIIMi IyTh MEXAy IapaMd BepmIiuH H “B
HAWTYYIIUH U3 TMOAXOASIUX’ pacuupsieTcs A0 Typa MPOXOJSIIero 4epe3 BCero ropoja.
IIpoBeneHBl BBIYMCIUTEIbHBIE OSKCIHEPUMEHTHl C MPEUIOKEHHBIM alTOpPUTMOM HaJ
TECTOBHIMH OWOJMOTEYHBIMH 3aJayaMyd M IIPUBEICHBI CPAaBHEHHS C alrOPUTMOM
“Ommwkadmuit  cocen”’. Pe3ynbTaThl BBIYHCIHTENBHBIX HSKCIHEPUMEHTOB MOKA3BIBAIOT
3¢ PEKTUBHOCTH TPEUIOKEHHOTO aJTOPUTMA.

KaroueBble cjioBa: cuMMeTpUYHas 3a4ada KOMMHBOSDKEpa, THIIEPIBPHCTHICCKHUH
ANTOpHUTM, “ONMIKAWIMIA cocex’” aAITOPHUTM, “‘B HAWIYUYIIAN U3 MOIXOMSIIUX’ aITOPHTM
“KpaT4yaldlIvil MyTh MEXIy apamMu BEpIIMH.

15



